Yahoo Search Búsqueda en la Web

Resultado de búsqueda

  1. Hace 2 días · Por ejemplo, está la Conjetura de Goldbach y la Hipótesis de Riemann. También está el Último Teorema de Fermat. Estos problemas siguen sin resolverse y son una parte importante de las matemáticas. Otros problemas conocidos son la Conjetura de Collatz y el Problema de los Números Primos Gemelos. Y no olvidemos las Ternas Pitagóricas.

  2. Hace 5 días · Este problema consiguió llamar la atención de otros tantos matemáticos de la época como Pierre de Fermat, René Descartes, Isaac Newton y Blaise Pascal y lo cierto es que cada uno, con sus ...

  3. Hace 2 días · Pascal found this fascinating, and exchanged a series of letters discussing the problem with his contemporary, Pierre de Fermat, of Last Theorem fame. Again, this problem goes back a few centuries. The Italian monk Pacioli had a go at solving something like it in 1494, in his work Summa de arithmetica, geometrica, proportioni et proportionalità.

  4. Hace 2 días · Fermat’s Last Theorem was named after a French mathematician, Pierre de Fermat. We know in mathematics that 32 + 4 2 = 52. Fermat made a bold claim—he said that a similar expression could never work with an exponent higher than two, and he had a marvelous proof that it would never work—but he did not share the proof.

  5. Hace 3 días · Pierre de Fermat, the man who ignited this mathematical firestorm, was a 17th-century French lawyer with a hidden passion. By day, he argued cases in courtrooms, but by night, he delved into the enchanting world of numbers. A true amateur mathematician, Fermat made significant contributions to number theory, probability, and analytic geometry.

  6. Hace 4 días · 19. Pierre de Fermat (1601-1665). French mathematician who laid the foundations of infinitesimal calculus. He’s most famous for “Fermat’s Last Theorem.” He proposed in a note scribbled in the margin of his copy of Diophantus’ Arithmetica.

  7. Hace 4 días · Wilson's theorem states that. a positive integer \ ( n > 1 \) is a prime if and only if \ ( (n-1)! \equiv -1 \pmod {n} \). In other words, \ ( (n-1)! \) is 1 less than a multiple of \ (n\). This is useful in evaluating computations of \ ( (n-1)! \), especially in Olympiad number theory problems.

  1. Otras búsquedas realizadas