Yahoo Search Búsqueda en la Web

  1. Cerca de 12.700 resultados de búsqueda
  1. Anuncios
    relacionados con: 冥王星族 wikipedia
  2. 1 millón+ usuarios visitaron search.alot.com el mes pasado

    Search for Domo Wikipedia info. Research & compare results on Alot.com online today. Find all the information you need for Domo Wikipedia online on Alot.com. Search now!

  3. 10,000+ usuarios visitaron answersite.com el mes pasado

    Find Info Answersite.com. Search From Wikipedia Today!

  1. ja.wikipedia.org › wiki › 冥王星族冥王星族 - Wikipedia

    冥王星族(めいおうせいぞく、Plutino)またはプルーティノ(プルーティノぞく)とは、冥王星と似たような軌道を持つ天体である。 このに属する天体は 海王星 と3:2の 共鳴 関係にあり、公転周期が海王星の約2分の3倍(243 - 253年)となる。

    小惑星番号
    名前(仮符号)
    推定直径(km)
    公転周期(年)
    134340
    2,320
    249
    Pluto I
    1,280
    249
    15810
    アラウン(1994 JR1)
    127
    245
    15875
    80
    未確認
  2. 冥王星轨道高度倾斜(相对黄道面大于17°)、是高度偏心的椭圆轨道。冥王星因离心率高其轨道的一小部分比海王星轨道更接近太阳。冥王星-冥卫一系统的质心于1989年9月5日到达近日点, 自1979年2月7日至2月11日该系统的质心比海王星更靠近太阳。

  3. ja.wikipedia.org › wiki › 冥王星冥王星 - Wikipedia

    冥王星は世界各国の人々に、太陽系の9つ目の惑星として長い間親しまれてきた。. 特に、冥王星を発見したクライド・トンボーが アメリカ人 であったことから、冥王星は1930年の発見以降長い間、アメリカ人が発見した唯一の惑星とされ、発見当初から ...

  4. 20/12/2020 · 小天体分布在柯伊伯带的内层部分,现时已知的柯伊伯带天体中,有近四分一是冥小天体。除了冥王星之外,第一颗冥小天体是在1993年9月16日发现的1993 ro。

    • 方位
    • 地形上的特征
    • 命名法
    • 相关条目
    • 外部链接

    冥王星可能被定义为自转轴倾斜60度逆转,或倾斜120度顺转的天体。依据较后定义的右手定则,目前在阳光下的半球是北半球,南半球有较多的部分在黑夜中。这项定义是国际天文学联合会(IAU)和新视野号团队使用的。然而,旧的定义可能会将冥王星的自转定义为逆行,因此太阳照射到的这一面是以南半球为主。在这两种定义中,东方和西方的方向也会交换。

    克苏鲁区

    克苏鲁区,名字源自霍华德·菲利普斯·洛夫克拉夫特的作品中虚构的神,是冥王星赤道上狭长、黑暗的地区,以它的形状取的绰号是鲸鱼。它的长度是2,990 km(1,860 mi),是冥王星上最大片的黑暗地形。推测这个区域的颜色是由被称为复杂的碳氢化合物,该区域的暗颜色推测是由称为托林的焦油覆盖的表面,这种焦油是复杂的碳氢化合物,是甲烷和大气中的氮在紫外线和宇宙射线的交互作用下形成的。在克鲁苏区出现大量的陨石坑,显示该区可能有数十亿年古老,相较之下,毗邻且相对明亮但缺乏坑洞的史波尼克高原,可能只有一亿岁。

    汤博区

    汤博区,昵称为心脏,是一大片浅色的心形地区,以发现冥王星的克莱德·汤博的名字命名。心形的两叶都有独特的地质特征并分享明亮的外观,西方的叶(史波尼克高原)比东部的叶更为平滑。心的跨距大约1,590 km(990 mi)。这个区域包含 3,400米(11,000英尺)高的山和冰冻的水,希拉里山和诺盖山在它的西南边缘。表面缺乏撞击坑,显示这地区的历史可能少于1亿年,因此,冥王星可能有活跃的地质运动。后续的资料表明这个地区的边缘有如冰川的冰流特征,和有证据显示亮的物质覆盖在黑暗的克苏鲁区东部边缘。

    指节套环

    一系列具有半规则间隔的黑暗斑点和规则的边界被昵称为指节套环。它们位于赤道,界于心和鲸鱼的尾巴之间,直径平均约480 km(300 mi)。从西(汤博区的南边)到东(鲸鱼的尾端),套环依序是: 1. 克鲁恩斑( Krun Macula):以伊拉克南部曼德语族地狱的主神命名,相当于地府的阎罗王。 2. 阿拉斑(Ala Macula):以尼日利亚东部依博人的地域和收获之神命名。 3. 炎魔斑 (Balrog Macula):以托尔金的幻想神话中的虚构的恶魔人种命名。 4. 巫库波卡梅斑(Vucub-Came Macula)和匈卡梅斑(Hun-Came Macula):依据玛雅基切语议会之书的两位死神命名。 5. 孟婆斑(Meng-p'o Macula):以中国佛教中让死者忘记前世的神命名。

    国际天文学联合会的行星命名工作小组负责为冥王星的地表特征赋予官方的名称。迄2015年8月还没有批准任何一个地区的名称。 截至2015年8月,新视野号科学团队的非正式名称来自下列主题:探险家、太空任务、太空船、科学家和工程师;虚构的探险家、旅客、船只、目标和起源;有想像和探险著作的作家和艺术家;虚构的冥府、存在的地狱、和冥府的访客。新视野号的科学团队在太空船抵达冥王星之前就已经邀请各界人士提出名单和票选出名称。

    NASA的冥王星真相 Archived2011-08-20 at WebCite(英文)
    NASA的官方网站首页 页面存档备份,存于互联网档案馆(英文)
    新视野号网站首页 页面存档备份,存于互联网档案馆(英文)
    这一年的冥王星 (NASA的GIF动画,2015年7月15日) 页面存档备份,存于互联网档案馆
    • 分类
    • 发现争议
    • 命名
    • 轨道和自转
    • 卫星
    • 碰撞家族
    • 探索
    • 参见
    • 脚注
    • 外部链接

    妊神星是一颗类冥天体,该术语用于描述位于海王星轨道以外的矮行星。妊神星的矮行星地位,意味着它被认为有足够的质量以自身的重力维持近似圆球的形状,但不能清除邻近的小天体。尽管妊神星和球形相差甚远,但其椭球的形状肇因于高速旋转,类似水气球旋转时伸长的现象,而非其自身重力无法克服物质抗压强度所致。妊神星曾在2006年被小行星中心归类为经典柯伊伯天体,但现已被除名。对标称轨线的研究表明,妊神星是五阶7:12共振天体[注 2],因为其35天文单位的近日点距离接近于海王星的稳定极限。帕洛玛山天文台的数字巡天曾于1955年3月22日发现过妊神星。但当时需要更多的观察以确定其是否处于运动状态。

    有两个团队主张自己才是妊神星的发现者。2004年12月,迈克·布朗领导的加州理工学院团队,在他们于2004年5月20日拍摄的一系列照片中,发现了妊神星。2005年7月20日,他们发表了一份报告的在线摘要,这份报告将在2005年9月的一场会议上宣布该发现。与此同时,在西班牙的内华达山脉天文台,若泽·路易斯·奥尔蒂斯·莫雷诺领导的安达卢西亚天体物理研究所(英语:Instituto de Astrofísica de Andalucía)团队,在拍摄于2003年3月7日至10日的一系列照片上,亦发现了妊神星。2005年7月27日晚,奥尔蒂斯在发给小行星中心的电子邮件中,披露了他们的发现。 布朗发现,在西班牙团队宣布该发现的前一天,西班牙天文台曾经访问过他的观察日志,因此他怀疑他们盗窃了他的成果。布朗的日志中包含有足够多的信息,让奥尔蒂斯能够在2003年的照片中重新发现妊神星;7月29日,西班牙团队再次访问了他的日志,而这正好是奥尔蒂斯排到望远镜时间,获取确认照片以向小行星中心再次宣布其发现之前。奥尔蒂斯后来承认了他曾访问过加州理工学院的观察日志,但他否认了所有指控,表示他们仅仅是为了验证这是不是一颗新天体。 根据国际天文联合会(IAU)的规定,首先向小行星中心提交微型行星的发现报告,并能提供确证轨道所需必要数据者,享有发现者的荣誉。成为发现者的最大好处是能够为行星命名。然而,当IAU于2008年9月17日宣布妊神星为矮行星时,并未提及任何发现者。IAU分别采用了西班牙团队的发现位置和加州理工学院的命名。奥尔蒂斯团队建议的名称,是古伊比利亚春天女神的名字“Ataecina”。

    在被赋予永久名称前,加州理工学院的发现者们曾将妊神星称为“圣诞老人”(Santa),以纪念它的发现日2004年12月28日(恰在圣诞节之后)。2005年7月,西班牙团队向小行星中心(MPC)报告了他们的独立发现。2005年7月29日,妊神星得到了首个官方称谓:临时编号2003 EL61,其中“2003”取自西班牙团队照片的拍摄日期。2006年9月7日,妊神星被正式编号为小行星136108号((136108) 2003 EL61)。 按照IAU既定的指引,经典柯伊伯带天体应以神话中的创造之神为名,2006年9月,加州理工学院团队向IAU提交了他们对(136108) 2003 EL61及其卫星的正式命名;这些名称由戴维·拉比诺维茨提出,取自夏威夷神话,用于“纪念发现这些卫星的地点”。[注 3]哈乌美亚(Haumea)是夏威夷岛的保育女神,而莫纳克亚天文台正是坐落于夏威夷岛。此外,哈乌美亚还被视为大地之母帕帕女神(英语:Papahanaumoku),是天空之父瓦基亚(英语:Wākea)的妻子;从这层意义上讲,以“哈乌美亚”为2003 EL61命名也是恰当的选择:与其他已知的典型柯伊伯带天体不同,2003 EL61没有厚厚的冰幔包裹着的小型岩石核心,而被认为几乎完全以固态岩石构成。再者,作为繁殖与生育女神的哈乌美亚,其众多子女来自她身体上的不同部位;这也契合了在一次远古碰撞中,大量冰体被认为从这颗矮行星上分离出去的事件。两颗已知的卫星亦被认为起源自该事件,并分别以哈乌美亚的两个女儿为名:妊卫一希亚卡(Hiʻiaka)和妊卫二纳玛卡(Nāmaka)。

    妊神星有着经典柯伊伯带天体的典型轨道,轨道周期为283地球年,近日点约为35天文单位,轨道倾角约28°。1992年初,妊神星经过了远日点,当前离太阳距离超过50天文单位。 妊神星的轨道离心率略大于其碰撞家族的其他成员,据推测,是妊神星对海王星存在微弱的五阶12:7轨道共振[注 2]所致;由于导致轨道倾角和离心率互换的古在效应,妊神星在近十亿年来逐渐偏离了其原始轨道。 妊神星的目视星等为17.3,是柯伊伯带第三亮的天体,仅次于冥王星和鸟神星,使用大型业余望远镜也可轻易观察到。然而,由于行星和多数太阳系小天体大都形成于太阳系的原始盘中,位于共同轨道路径(英语:invariable plane)上;因此,绝大多数早期的远距天体观测都将目光聚集于共同平面在天空上的投影中,亦即黄道上。随着对黄道附近天区的探索逐步充分,后来的天文观测开始探索轨道倾角较高的天体,以及平均运动更慢的远距天体。当这些观测覆盖到妊神星所在天区时,高轨道倾角、(当前)距离黄道甚远的妊神星终被发现。 妊神星的亮度波动周期很短,只有3.9小时,唯一的解释是其自转周期也是这一长度。这要快于其余已知的太阳系平衡天体,以及其余已知的直径大于100千米的天体。妊神星的高速自转被认为是一次碰撞导致的,这次碰撞同时创造了妊神星的卫星及其碰撞家族。

    妊神星已经被发现的卫星有两颗:妊卫一和妊卫二。 两颗卫星均由布朗团队在2005年使用凯克天文台观测妊神星时发现。 妊卫一发现于2005年1月26日,,加州理工学院团队曾将其昵称为“鲁道夫”(传说中为圣诞老人拉雪橇的驯鹿之一)。妊卫一较靠外侧,直径约为310千米,是两颗卫星中较大较亮的一颗,以近圆形的轨道环绕妊神星公转,公转周期为49天。妊卫一对1.5微米和2微米的红外线有着强烈的吸收能力,与其表面大部分区域覆盖有结晶冰的现象相一致。由于妊卫一有着独特光谱,而其吸收谱线又与妊神星十分类似,布朗团队据此认为俘获模型无法解释这一系统的形成,因此得出了妊神星的卫星来自于妊神星本身的结论。 体积较小且靠近里侧的妊卫二,发现于2005年6月30日,曾被昵称为“布立增”。其质量仅有妊卫一的十分之一,公转轨道为非开普勒轨道,呈高度椭圆形,公转周期为18天。由于妊卫二的轨道受妊卫一摄动影响,截至2008年,两颗卫星的轨道交角为13°。天文学家并没有预料到妊卫二能具有相对较大的偏心率,也没有预料到两颗卫星的轨道会相互倾斜,这是因为潮汐作用会逐渐减小偏心率/倾角。由此,有推测认为,妊神星系统可能在相对近期内曾通过了较强的3:1共振区域,所以它的卫星才能具有现今如此独特的轨道。 现在,妊神星两颗卫星的轨道几乎完全侧向地球,并且妊卫二会周期性地掩食妊神星。通过观测这一现象,我们可以得出妊神星及其卫星的精确尺寸与形状,就像1980年代后期得出冥王星及冥卫一的那样。掩食发生时,妊神星系统会经历微小的亮度变化,中等口径以上的专业望远镜能够观测到这一变化。妊卫一上次对妊神星的掩食发生在1999年,但当时天文学家们尚未发现该系统,而下次妊卫一掩食将发生在130年之后。然而,出于规则卫星的独特情况,妊卫一会强烈地扭曲妊卫二的轨道,从而令妊卫二-妊神星掩食现象可以持续多年。

    妊神星是其碰撞家族中最大的天体,碰撞家族成员有着相似的物理和轨道属性,被认为起源于因剧烈碰撞导致解体的较大天体。妊神星族是海王星外天体中首先被识别出的碰撞族,其中包括妊神星及其卫星、(55636) 2002 TX300(≈364千米)、(24835) 1995 SM55(≈174千米)、(19308) 1996 TO66(≈200千米)、(120178) 2003 OP32(≈230千米)以及(145453) 2005 RR43(≈252千米)。布朗等人起初认为该星族是导致妊神星冰幔脱离的单次撞击的直接产物,但是后来认为其中有更复杂的缘由:初次撞击产生的碎片形成了妊神星的一个大卫星,之后该大卫星又遭受第二次撞击解体,产生的碎片向外扩散。根据后一种猜测推算出的的碎片扩散速率,与测量出的碰撞族成员速率更加吻合。 撞击族的存在显示妊神星及其“后代”可能诞生于离散盘。在太阳系的历史上,当前空旷的柯伊伯带发生这种撞击的概率不超过0.1%。初期的柯伊伯带比现在更密集,而妊神星族在当时可能还未形成,因为如此密集的星族会被海王星在柯伊伯带的运动所破坏——据信这也是柯伊伯带当前低密度的原因。因此,碰撞概率较高的动态离散盘区域更有可能是妊神星及其家族的诞生之地。 由于该星族的天体到达当今彼此远离的位置至少需要上十亿年,形成妊神星族的那次碰撞可能发生于太阳系历史的初期。

    经过计算如果2025年9月25日的发射飞行器,通过木星重力帮助,可以用14.25年飞掠妊神星。当飞行器抵达的时候,妊神星距离太阳48.18个天文单位。飞行时间如果是16.25年,那么发射时间可以在2026年11月1日、2037年9月23日和2038年10月29日。

    妊神星轨道位置 (页面存档备份,存于互联网档案馆) - NASA
    (136108) 妊神星、妊卫一和妊卫二 (页面存档备份,存于互联网档案馆) - Johnston's Archive.com(更新于2008年9月17日)
    2009国际天文年 播客:矮行星妊神星(Darin Ragozzine) (页面存档备份,存于互联网档案馆)
  1. Anuncios
    relacionados con: 冥王星族 wikipedia
  2. 1 millón+ usuarios visitaron search.alot.com el mes pasado

    Search for Domo Wikipedia info. Research & compare results on Alot.com online today. Find all the information you need for Domo Wikipedia online on Alot.com. Search now!

  3. 10,000+ usuarios visitaron answersite.com el mes pasado

    Find Info Answersite.com. Search From Wikipedia Today!