Yahoo Search Búsqueda en la Web

  1. Anuncios

    relacionados con: The Black Hole
  2. Detailed Reviews and Recent Photos. Know What To Expect Before You Book.

    World's largest, oldest, and most trusted travel community - Forbes

    More Hotels - From $76.00/night - Ver más artículos
    • Find Hotels

      Find the Perfect Hotel & Experience

      A Vacation You'll Love!

    • Best Value Hotels

      Combining Price, Ratings and More

      To Find You the Best Value.

Resultado de búsqueda

  1. www.nasa.gov › universe › what-are-black-holesWhat Are Black Holes? - NASA

    8 de sept. de 2020 · A black hole is an astronomical object with a gravitational pull so strong that nothing, not even light, can escape it. A black holes “surface,” called its event horizon, defines the boundary where the velocity needed to escape exceeds the speed of light, which is the speed limit of the cosmos. Matter and radiation fall in, but they can’t get out.

  2. en.wikipedia.org › wiki › Black_holeBlack hole - Wikipedia

    A black hole is a region of spacetime where gravity is so strong that nothing, including light and other electromagnetic waves, is capable of possessing enough energy to escape it. Einstein's theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole.

  3. 13 de mar. de 2024 · Black holes are among the most mysterious cosmic objects, much studied but not fully understood. These objects aren’t really holes. They’re huge concentrations of matter packed into very tiny spaces. A black hole is so dense that gravity just beneath its surface, the event horizon, is strong enough that nothing – not even light ...

    • Overview
    • One black hole is not like the others
    • Peering through the darkness

    These infinitely dense points in space will spaghettify anything that ventures too close.

    Black holes are points in space that are so dense they create deep gravity sinks. Beyond a certain region, not even light can escape the powerful tug of a black hole's gravity. And anything that ventures too close—be it star, planet, or spacecraft—will be stretched and compressed like putty in a theoretical process aptly known as spaghettification.

    There are four types of black holes: stellar, intermediate, supermassive, and miniature. The most commonly known way a black hole forms is by stellar death. As stars reach the ends of their lives, most will inflate, lose mass, and then cool to form white dwarfs. But the largest of these fiery bodies, those at least 10 to 20 times as massive as our own sun, are destined to become either super-dense neutron stars or so-called stellar-mass black holes.

    2:55

    In their final stages, enormous stars go out with a bang in massive explosions known as supernovae. Such a burst flings star matter out into space but leaves behind the stellar core. While the star was alive, nuclear fusion created a constant outward push that balanced the inward pull of gravity from the star's own mass. In the stellar remnants of a supernova, however, there are no longer forces to oppose that gravity, so the star core begins to collapse in on itself.

    If its mass collapses into an infinitely small point, a black hole is born. Packing all of that bulk—many times the mass of our own sun—into such a tiny point gives black holes their powerful gravitational pull. Thousands of these stellar-mass black holes may lurk within our own Milky Way galaxy.

    Supermassive black holes, predicted by Einstein's general theory of relativity, can have masses equal to billions of suns; these cosmic monsters likely hide at the centers of most galaxies. The Milky Way hosts its own supermassive black hole at its center known as Sagittarius A* (pronounced “ay star”) that is more than four million times as massive as our sun.

    The tiniest members of the black hole family are, so far, theoretical. These small vortices of darkness may have swirled to life soon after the universe formed with the big bang, some 13.7 billion years ago, and then quickly evaporated. Astronomers also suspect that a class of objects called intermediate-mass black holes exist in the universe, although evidence for them is so far debatable.

    No matter their starting size, black holes can grow throughout their lives, slurping gas and dust from any objects that creep too close. Anything that passes the event horizon, the point at which escape becomes impossible, is in theory destined for spaghettification thanks to a sharp increase in the strength of gravity as you fall into the black hole.

    As astrophysicist Neil Degrasse Tyson once described the process: “While you're getting stretched, you're getting squeezed—extruded through the fabric of space like toothpaste through a tube.”

    Because black holes swallow all light, astronomers can't spot them directly like they do the many glittery cosmic objects in the sky. But there are a few keys that reveal a black hole's presence.

    For one, a black hole's intense gravity tugs on any surrounding objects. Astronomers use these erratic movements to infer the presence of the invisible monster that lurks nearby. Or objects can orbit a black hole, and astronomers can look for stars that seem to orbit nothing to detect a likely candidate. That's how astronomers eventually identified Sagittarius A* as a black hole in the early 2000s.

    Black holes are also messy eaters, which often betrays their locations. As they sip on surrounding stars, their massive gravitational and magnetic forces superheat the infalling gas and dust, causing it to emit radiation. Some of this glowing matter envelops the black hole in a whirling region called an accretion disk. Even the matter that starts falling into a black hole isn't necessarily there to stay. Black holes can sometimes eject infalling stardust in mighty radiation-laden burps.

    Sources:

    • NASA: What Is a Black Hole?

    • NASA Share the Science: Black Holes

  4. 6 de nov. de 2023 · Astronomers have discovered the most distant black hole yet seen in X-rays, using NASA telescopes. The black hole is at an early stage of growth that had never been witnessed before, where its mass is similar to that of its host galaxy. This result may explain how some of the first supermassive black holes in the universe formed.

  5. 10 de abr. de 2019 · Apr 10, 2019. Article. A black hole and its shadow have been captured in an image for the first time, a historic feat by an international network of radio telescopes called the Event Horizon Telescope (EHT). EHT is an international collaboration whose support in the U.S. includes the National Science Foundation.

  1. Otras búsquedas realizadas