Yahoo Search Búsqueda en la Web

Resultado de búsqueda

  1. 8 de may. de 2024 · La Fuerza de Casimir es un fenómeno de la física cuántica que fue propuesto por el físico holandés Hendrik Casimir en 1948. En términos muy simplificados, esta fuerza representa la presión que el campo electromagnético ejerce sobre los objetos que se encuentran muy, muy cerca el uno del otro.

  2. 3 de may. de 2024 · El Efecto Casimir, descubierto por el físico holandés Hendrik Casimir en 1948, revela la existencia de fuerzas cuánticas en el vacío del espacio, desafiando nuestras intuiciones sobre el...

    • Roberto Cantero
    • contacto@urbantecno.com
  3. 24 de abr. de 2024 · In 1948, physicist Hendrik Casimir theorised that some objects experience a very weak attraction when they are held close to one another in space because of the imperceptible flickers of...

  4. Hace 5 días · The Casimir Effect is a quantum mechanical phenomenon first predicted by the Dutch physicist Hendrik Casimir in 1948. This effect has since become a significant concept in the realm of modern physics, particularly in the studies of quantum field theory and electromagnetism.

  5. 12 de may. de 2024 · The Casimir effect is a fascinating and often overlooked phenomenon in the field of quantum physics. Named after its discoverer, Dutch physicist Hendrik Casimir, this effect refers to the creation of a minuscule force between two closely placed uncharged objects due to fluctuations in the quantum vacuum.

  6. 9 de may. de 2024 · Casimir interaction is an intriguing phenomenon that is induced by electromagnetic quantum fluctuations, which dominates the interaction between microstructures at small separations and is essential for micro- and nano-electromechanical systems (MEMS and NEMS). However, Casimir interaction driven by hyperbolic polaritons remains an unexplored frontier. In this work, we investigate the Casimir ...

  7. 24 de abr. de 2024 · Here, we use Casimir self-assembly with triangular gold nanostructures for rotational self-alignment at truly Casimir distances (100 to 200 nm separation). The interplay of repulsive electrostatic and attractive Casimir potentials forms a stable quantum trap, giving rise to a tunable Fabry-Pérot microcavity.