# Yahoo Search Búsqueda en la Web

1. ## Cerca de 39 resultados de búsqueda

1. ### en.wikipedia.org › wiki › Karl_WeierstrassKarl Weierstrass - Wikipedia

Karl Theodor Wilhelm Weierstrass (German: Weierstraß [ˈvaɪɐʃtʁaːs]; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the "father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school teacher, eventually teaching mathematics, physics, botany and gymnastics. [2]

2. ### it.wikipedia.org › wiki › Karl_WeierstrassKarl Weierstrass - Wikipedia

Karl Theodor Wilhelm Weierstrass o Weierstraß (Ostenfelde, 31 ottobre 1815 – Berlino, 19 febbraio 1897) è stato un matematico tedesco, spesso chiamato il "padre dell'analisi moderna". Indice 1 Biografia

3. ### en.wikipedia.org › wiki › Weierstrass_functionWeierstrass function - Wikipedia

Weierstrass, Karl (1895), "Über continuirliche Functionen eines reellen Arguments, die für keinen Werth des letzeren einen bestimmten Differentialquotienten besitzen", Mathematische Werke von Karl Weierstrass, vol. 2, Berlin, Germany: Mayer & Müller, pp. 71–74

4. ### www.wias-berlin.deWeierstrass Institute

The project-oriented research at the Weierstrass Institute is characterized by combining the mathematical disciplines of analysis, stochastics and numerics. This combination has great potential for solving complex applied problems such as the reliable extraction of information from large datasets or the suitable consideration of uncertainties in describing processes.

5. ### math.berkeley.edu › ~brent › filesThe Weierstrass Function - University of California, Berkeley

Theorem (Karl Weierstrass, 1872). Let a2(0;1) and let bbe an odd integer such that ab>1 + 3ˇ 2. Then the series f(x) = X1 n=0 ancos(bnˇx) converges uniformly on R and de nes a continuous but nowhere di erentiable function. The function appearing in the above theorem is called theWeierstrass function. Before we prove the theorem,

6. ### de.wikipedia.org › wiki › Satz_von_Bolzano-WeierstraßSatz von Bolzano-Weierstraß – Wikipedia

Der Satz von Bolzano-Weierstraß (nach Bernard Bolzano und Karl Weierstraß) ist ein Satz der Analysis über die Existenz konvergenter Teilfolgen Inhaltsverzeichnis 1 Formulierungen des Satzes von Bolzano-Weierstraß

7. ### fr.wikipedia.org › wiki › Théorème_de_BolzanoThéorème de Bolzano-Weierstrass — Wikipédia

Il tire son nom des mathématiciens Bernard Bolzano et Karl Weierstrass. Énoncé du théorème [ modifier | modifier le code ] Un espace métrisable X est compact (au sens de l'axiome de Borel-Lebesgue ) si (et seulement si) toute suite d'éléments de X admet une valeur d'adhérence dans X ou, de manière équivalente, admet une sous-suite qui converge vers un élément de X .